Оценка погрешностей измерений. Расчет выборочного стандартного отклонения. Определить погрешность измерения


Оценка погрешностей результатов измерений - Документ

Оценка погрешностей результатов измерений

  1. Погрешности измерений и их типы

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность , где и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2. Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна кг/м3.

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным dиh будут равны

, .

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где и приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Д

Рис. 1

ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса), выведенный из следующих эмпирических положений.
  1. погрешности измерений могут принимать непрерывный ряд значений;

  2. при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

  3. чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i-го измерения; - среднее арифметическое полученных значений; n– число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде .

Интервал значений от до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента, дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов nраспределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n, и столбца, соответствующего доверительной вероятности α

Таблица 1.

n

α

n

α

0,8

0,9

0,95

0,98

0,8

0,9

0,95

0,98

3

1,9

2,9

4,3

7,0

6

1,5

2,0

2,6

3,4

4

1,6

2,4

3,2

4,5

7

1,4

1,9

2,4

3,1

5

1,5

2,1

2,8

3,7

8

1,4

1,9

2,4

3,9

Пользуясь данными таблицы, можно:

  1. определить доверительный интервал, задаваясь определенной вероятностью;

  2. выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Хбудем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

Окончательный результат измерений рекомендуется представлять в следующем виде

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх= 0,042, то отбрасываем 2 и пишем Δх=0,04, а если Δх=0,123, то пишем Δх=0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

  1. Проводятся измерения заданного физического параметра nраз в одинаковых условиях, и результаты записываются в таблицу.

  2. Если результаты некоторых измерений резко отличаются по своему значению от остальных измерений, то они как промахи отбрасываются, если после проверки не подтверждаются.

  3. Вычисляется среднее арифметическое из n одинаковых измерений. Оно принимается за наиболее вероятное значение измеряемой величины

. (8)

  1. Находятся абсолютные погрешности отдельных измерений

  2. Вычисляются квадраты абсолютных погрешностей отдельных измерений (Δхi)2

  3. Определяется средняя квадратичная ошибка среднего арифметического

.

  1. Задается значение доверительной вероятности α. В лабораториях практикума принято задавать α=0,95.

  2. Находится коэффициент Стьюдента для заданной доверительной вероятности α и числа произведенных измерений (см.табл.)

  3. Определяется случайная погрешность

.

  1. Определяется суммарная погрешность

.

  1. Оценивается относительная погрешность результата измерений

.

  1. Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин , можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется , а затем определяется среднее арифметическое из всех значений yi

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция yопределяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

. (10)

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y. Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

,

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

№ измерения

d,

мм

мм

мм2

h,

мм

, мм

, мм2

1

50,15

0

0

12,32

0,05

0,025

2

50,10

0,05

0,025

12,34

0,03

0,09

3

50,20

0,05

0,025

12,41

0,04

0,016

4

50,25

0,10

0,0100

12,36

0,01

0,01

5

50,05

0,10

0,0100

12,42

0,05

0,025

Ср.

50,150

1. Вычисление среднего значения искомой величины. По вычисленным средним значениям диаметра и высоты цилиндра определим среднее значение объема цилиндра

Оценка погрешностей измерения

2.Вычисление систематической (приборной) погрешности

Приборные погрешности прямых измерений

,

Систематическая погрешность при измерении объема

; .

3.Вычисление случайной погрешности. Средне квадратичные погрешности среднего арифметического

; ;

, .

Средняя квадратичная ошибка среднего арифметического значения

;

Доверительная вероятность

Коэффициент Стьюдента

Случайные погрешности прямых измерений

; ,

; .

Случайная погрешность объема цилиндра

; .

4. Вычисление суммарной погрешности

Абсолютная погрешность

; .

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Общие рекомендации по построению графиков

Г

Рис.2

рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Рис.3

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

Рис.4

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

textarchive.ru

Приложение. Оценка погрешности измерений | Физика

Погрешности измерений обусловлены неточностью самих приборов и неточностью снятия их показаний, влиянием случайных факторов и т. д. Различают абсолютную и относительную погрешности.

Абсолютной погрешностью называют модуль отклонения измеренного значения физической величины от ее истинного значения. Если ∆A – наибольшее значение абсолютной погрешности, то результат измерения записывают в виде A = Aср ± ∆A. Это означает, что значение физической величины находится между Amin = Aср – ∆A и Amax = Aср + ∆A.

Относительная погрешность εA = ∆A/A * 100%. Относительная погрешность полнее характеризует точность измерения, чем абсолютная. Например, если длина карандаша и длина комнаты измерены с одной и той же абсолютной погрешностью ∆l = 1 см, то в первом случае измерение не очень точное (относительная погрешность довольно велика), а во втором случае – довольно точное (относительная погрешность мала).

Оценка абсолютной погрешности прямых измерений. При прямом измерении значение величины определяют непосредственно по шкале измерительного прибора (линейки, динамо- метра, часов и т. д.). Если результаты повторных опытов в пределах точности прибора совпадают, погрешность измерения считают равной цене деления шкалы прибора ∆A = ∆Aш (например, наибольшая абсолютная погрешность измерения длины с помощью линейки с миллиметровыми делениями равна 1 мм). Если же разброс результатов повторных опытов больше ∆Aш, используют усреднение результатов нескольких опытов. Тогда за измеренное значение принимают Aср = (A1 + A2 + … + AN) / N, где N – число опытов, а погрешность измерения оценивают ∆(Aср) = (|Aср – A1| + |Aср – A2| + … + |Aср – AN|) / N. За абсолютную погрешность измерения ∆A принимают большую из двух величин: ∆(Aср) и ∆Aш.

Оценка абсолютной погрешности косвенных измерений. Косвенным называют измерение, при котором значение измеряемой величины определяют не непосредственно по показаниям приборов, а по формулам, в которые входят значения физических величин, полученные с помощью прямых измерений. Например, для измерения плотности вещества измеряют массу и объем тела и находят плотность по формуле ρ = m/V.

Один из наиболее простых методов оценки погрешности косвенных измерений – это метод границ. Он состоит в том, что с помощью формулы, по которой вычисляют измеряемую величину B, находят два значения: Bmin и Bmax, между которыми находится истинное значение измеренной величины B. Абсолютная погрешность измерения в таком случае ∆B = (Bmax – Bmin)/2, а среднее значение Bср = (Bmax + Bmin)/2.

Округление результатов. Округлять результаты измерений и вычислений следует так, чтобы последняя значащая цифра находилась в том же десятичном разряде, что и абсолютная погрешность измеряемой величины.

phscs.ru

Определение погрешностей измерений

52

ВВЕДЕНИЕ

Практикум по курсу общей физики в педагогических институтах должен помочь студентам глубже уяснить основные физические законы и явления, отчетливое понимание которых необходимо будущим учителям физики. При выполнении лабораторных работ студенты должны приобрести элементарные навыки в методике и технике физического эксперимента.

Студенты, приступая к выполнению лабораторной работы, должны ясно представлять и понимать физические законы и явления, исследуемые в данной работе. Поэтому разделам, посвященным описанию экспериментального оборудования и порядку выполнения работы, предшествует раздел, в котором кратко описывается теория метода исследования изучаемых физических законов и явлений.

Чтобы обеспечить контроль студентов за самостоятельной подготовкой к лабораторной работе, в методические указания включены контрольные вопросы, которые расположены непосредственно после описания каждой лабораторной работы.

Объем сведений, излагаемых в первом разделе, не освобождает студентов от необходимости изучения соответствующей литературы, ссылки на которую приведены в конце описания лабораторной работы.

Лабораторная работа №0

Цель работы: ознакомиться с различными типами ошибок, возникающих при нахождении значений физических величин; научиться вычислять погрешности измерений; ознакомиться с правилом построения графиков зависимости измеряемых величин от каких-либо параметров.

Теоретическая часть работы

Измерить какую-либо физическую величину – значит, узнать сколько раз заключается в ней однородная величина, принятая за единицу измерения.

Если данная физическая величина измеряется непосредственно при помощи какого-либо прибора, то мы имеем дело с прямым измерением.

Если измерение физической величины происходит через другие величины (определенные при помощи прибора), связанные с измеряемой физической величиной определенной функциональной зависимостью, то мы имеем дело с косвенными измерениями.

Измерить физическую величину абсолютно точно невозможно, так как всякое измерение сопровождается той или иной ошибкой или погрешностью.

Погрешности или ошибки, возникающие при измерении физических величин, подразделяются на систематические и случайные.

Систематические погрешности сохраняют свою величину (и знак!) во время эксперимента. Они могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, не равные плечи весов) и с самой постановкой отсчета.

Систематических ошибок можно избежать путем изучения приборов, которыми пользуются при выполнении работ, полной разработкой теории опыта, а также введением соответствующих поправок в результат измерений.

Погрешности, меняющие величину и знак от опыта к опыту, называются случайными. Случайные ошибки могут быть связаны с трением, с несовершенством объекта измерений (например, проволока может иметь не вполне круглое сечение) или с особенностями самой измеряемой величины (например, космический фон).

Исключить при измерениях случайные ошибки невозможно, но благодаря тому, что к случайным ошибкам можно применять законы теории вероятностей, можно уменьшить влияние этих ошибок на окончательный результат измерений.

Иногда говорят о промахах (просчетах) или грубых ошибках. Грубые ошибки – это ошибки, возникающие в результате небрежности отсчета по приборам или неразборчивости в записи их показаний. Единственное средство устранить их: внимательно сделать повторное (контрольное) измерение. Эти ошибки в расчет не принимают.

Рассмотрим подробнее нахождение случайных погрешностей при прямых и косвенных измерениях.

Пусть нам необходимо измерить некоторую величину N. Если в n опытах получено n значений этой величины: N1, N2, N3, N4,........,Nn, то за наилучшее (истинное) значение измеряемой величины принимается среднее арифметическое значение Ni, которое называют средним значением данной величины:

. (1)

Разность между средним значением измеряемой величины и значением, полученным в отдельном измерении, то есть

, (2)

называется абсолютной ошибкой (погрешностью) i-го измерения.

Для определения средней абсолютной ошибки результата берут среднее арифметическое абсолютных значений (модулей) отдельных абсолютных ошибок, то есть

(3)

Отношение

Е=(4)

называется относительной ошибкой (погрешностью) i-го измерения.

Отношение средней абсолютной ошибки к истинному значению дает среднюю относительную погрешность результата измерений:

Е=.(5)

Для нахождения степени разброса единичных измерений относительно вводится понятие среднеквадратичной погрешности, которая определяется из следующей формулы:

(6)

Результат опыта, после нахождения среднеквадратичной погрешности можно записать в виде:

. (7)

Погрешность опыта, определяемая из (6) с увеличением числа измерений n уменьшается

~(8)

Величину, равную 3называют предельной абсолютной погрешностью отдельного измерения. Т.е. еслито данное измерение относят к грубому и отбрасывают.

Оценка систематических погрешностей проводится из анализа особенностей методики, паспортной точности прибора и контрольных опытов. Систематические погрешности определяются классом точности прибора. Например, точность измерений штангенциркулем – 0,1 мм; микрометром – 0,01 мм.

В реальных опытах присутствуют как систематические, так и случайные погрешности. Если они характеризуются погрешностями и, то суммарная погрешность находится по формуле

, (9)

При этом следует отметить, что вопрос об учете систематических и случайных погрешностей актуален только тогда, когда одна из них не более чем в несколько раз превышает другую. В противном случае в качестве меры погрешности измерения следует указывать только большую погрешность.

В большинстве случаев мы имеем дело с косвенными измерениями, когда интересующая нас величина является функцией других независимых величин, которые и измеряются при помощи приборов.

В общем случае, если Y=f(x1,x2,........,xn) погрешность определяется из формулы

=(10)

Относительную погрешность величины Y вычисляют аналогично:

. (11)

Так как

,

то для относительной погрешности получаем:

. (12)

Нахождение абсолютной погрешности величины Y осуществляется из формулы

, (13)

где за наилучшее (истинное) значение величины Y принимается

(14)

где - средние значения измеряемых величин.

Так, например, если

, (15)

то

. (16)

. (17)

. (18)

Если Y=x1.x2, то

. (19)

. (20)

. (21)

Если , то

(22)

(23)

. (24)

Результат измерений записывается в виде, определяемом формулой (7). Например, запись m=0,8760,008 г означает, что в результате измерений для массы тела найдено значение 0,876 г с погрешностью 0,008 г. При записи измеренного значения, последней должна указываться цифра того десятичного разряда, который использован при указании погрешности. Так, один и тот же результат, в зависимости от погрешности записывается в виде: 1,20,1; 1,240,03; 1,2430,012 и т.д.

Рассмотрим пример нахождения погрешности косвенного измерения ускорения свободного падения.

Пусть ускорение свободного падения определялось экспериментально по периоду колебаний математического маятника.

.

Откуда ускорение свободного падения равно g=. Тогда погрешность в определенииg находим как погрешность косвенного измерения

Если нам необходимо найти относительную ошибку серии измерений, то данная формула перепишется в следующем виде

,

где и- средние значения в серии изn измерений; и- отклонение данного измерения от среднего значения.

Пусть результаты измерений дали следующие значения

=50,1 см,

=1,419 с.

Относительная неточность задания , т.е. величина, должна быть меньшеи. При округлениидо 3,14 мы допускаем абсолютную ошибку, так что

Пусть в k-ом измерении отклонение длины маятника от среднего значения составило 0,1 см, а отклонение периода колебаний от среднего значения 0,001 с.

Тогда относительная погрешность k-ого измерения будет равна.

.

Аналогичным образом вычисляется и среднеквадратичная погрешность.

Задание

Определить абсолютную, относительную и среднеквадратичную погрешности измерения площади поперечного сечения провода с прямоугольным сечением, поперечные размеры которого, измеренные при помощи микрометра приведены в таблице.

Таблица

опыта

1

2

3

4

5

6

7

8

a,мм

0,44

0,43

0,43

0,45

0,46

0,43

0,43

0,42

b, мм

0,31

0,33

0,32

0,35

0,34

0,35

0,33

0,32

При обработке результатов измерений часто пользуются графическими методами, которые служат: 1) для наглядного изображения полученных результатов, 2) для различных вычислительных операций.

Обычно для графического представления какой-либо функцииf(x,y) пользуются прямоугольной системой координат. Через нанесенные на миллиметровую бумагу точки А(x1,y1), B(x2,y2), C(x3,y3) и т.д. (рис.1) проводят кривую, которая является графическим изображением функции f(x,y). Эта кривая вычерчивается плавной, без резких искривлений и углов, и должна охватывать как можно больше точек или проходить между ними так, чтобы по обе стороны от нее точки распределялись равномерно.

Рис.1.

Выполнение лабораторной работы слагается из следующих этапов.

Первый этап состоит в предварительной подготовке к проведению эксперимента. Предварительная подготовка заключается в изучении теории того явления, которое исследуется в лабораторной работе, в изучении метода и схемы измерений, принципа действия, конструкции и условий эксплуатации физических приборов, используемых в работе, и в составлении плана предстоящих измерений по каждому заданию работы. Результатом предварительной подготовки является письменный отчёт, вносимый в рабочую тетрадь в виде короткого, но ясного изложения. Таким образом, отчет о лабораторной работе начинает подготавливаться до проведения эксперимента. Без предварительной подготовки студент не допускается к выполнению лабораторной работы.

Вторым этапом является экспериментальное выполнение работы. Работая в лаборатории, необходимо соблюдать следующие правила.

1. До начала выполнения эксперимента следует найти все принадлежности, необходимые для выполнения работы.

2. После проверки преподавателем или лаборантом монтажа установки приступить к измерениям.

3. Результаты всех отдельных измерений внести в таблицу и провести обработку результатов измерений.

Третий этап состоит в отчете по выполненной работе.

studfiles.net

Оценка погрешностей измерений на примерах

Пусть измеряемая имеет известное значение величина X. Естественно, отдельные, найденные в процессе измерения значения этой величины x1,x2,…xn заведомо не вполне точны, т.е. не совпадают с X. Тогда величина будет являться абсолютной погрешностью i-го измерения. Но поскольку истинное значение результата X, как правило, не известно, то реальную оценку абсолютной погрешности используя вместо X среднее арифметическое ,которое рассчитывают по формуле:

(1)

Однако при малых объемах выборки вместо предпочтительнее пользоваться медианой. Медианой (Ме) называют такое значение случайной величины х, при котором половина результатов имеет значение меньшее, а другая ­большее, чем Ме. Для вычисления Ме результаты располагают в порядке возрастания, то есть образуют так называемый вариационный ряд. Для нечетного количества измерений n мeдиана равна значению среднего члена ряда. Например, для n=3   Для четных n, значение Ме равно полусумме значений двух средних результатов. Например, для n=4  

Далее рассчитывают среднеквадратичную погрешность (стандартное отклонение выборки), являющуюся мерой разброса и характеризующую случайную погрешность определения:

(2)

Выборочное стандартное отклонение sзависит от объема выборки n и ее значение колеблется по случайному закону около постоянного значения генерального стандартного отклонения σ

 

Для расчета s пользуются неокругленными результатами анализа с неточным последним десятичным знаком. При очень большом числе выборки (n>) случайные погрешности могут быть описаны при помощи нормального закона распределения Гаусса. При малых n распределение может отличаться от нормального. В математической статистике эта дополнительная ненадежность устраняется модифицированным симметричным t-распределением. Существует некоторый коэффициент t, называемый коэффициентом Стьюдента, который в зависимости от числа степеней свободы (f) и доверительной вероятности (Р) позволяет перейти от выборки к генеральной совокупности. Стандартное отклонение среднего результата определяется по формуле:

(3)

Разности между средним  выборки и средним значением генеральной совокупности μ лежат в Р случаях в пределах, которые при помощи нормального распределения и связанного с ним t-распределения определяются следующим выражением:

(4)

Величина является доверительным интервалом среднего значения . Для серийных анализов обычно полагают Р = 0,95.

 

Таблица 1. значения коэффициента Стьюдента (t)

f

Р=0,90

Р=0,95

Р=0,98

Р=0,99

1

6,31

12,7

31,8

63,6

2

2,92

4,30

6,97

9,93

3

2,35

3,18

4,54

5,84

4

2,13

2,78

3,75

4,60

5

2,02

2,57

3,37

4,03

6

1,94

2,45

3,14

3,71

7

1,90

2,36

3,00

3,50

8

1,86

2,31

2,90

3,36

9

1,83

2,26

2,82

3,25

10

1,81

2,23

2,76

3,17

11

1,80

2,20

2,72

3,11

12

1,78

2,18

2,68

3,05

 

Пример 1. Из десяти определений содержания марганца в пробе требуется подсчитать стандартное отклонение единичного анализа и доверительный интервал среднего значения Mn %: 0,69; 0,68; 0,70; 0,67; 0,67; 0,69; 0,66; 0,68; 0,67; 0,68. Решение. По формуле (1) подсчитывают среднее значение анализа

 

                                                     = 0,679 . Далее по формуле (2) находят стандартное отклонение единичного результата

 

 

По табл. 1 (приложение) находят для f = n-1= 9 коэффициент Стьюдента (Р = 0,95) t = 2,26 и рассчитывают доверительный интервал среднего значения.

 

По табл. 1 (приложение) находят для f=n-1=9 коэффициент Стьюдента (Р=0,95) t=2,26 и рассчитывают доверительный интервал среднего значения. Таким образом, среднее значение анализа определяется интервалом (0,679 ± 0,009) % Мn.

Пример 2. Среднее из девяти измерений давления паров воды над раствором карбамида при 20°С равно 2,02 кПа. Выборочное стандартное отклонение измерений s = 0,04 кПа. Определить ширину доверительного интервала для среднего из девяти и единичного измерения, отвечающего 95 % - й доверительной вероятности. Решение. Коэффициент Стьюдента t для доверительной вероятности 0,95 и f = 8 равен 2,31. Учитывая, что  и , найдем: - ширина доверит.  интервала для среднего значения - ширина доверит.  интервала для единичного измерения значения

Если же имеются результаты анализа образцов с различным содержанием, то из частных средних s путем усреднения можно вычислить общее среднее значение s. Имея m проб и для каждой пробы проводя nj параллельных определений, результаты представляют в виде таблицы:

Номер образца

Номер анализа

1

2

i…nj

1

x11

x12

x1i…

2

x21

x22

x2i…

3

x31

x32

x3i…

j…

m

Средняя погрешность рассчитывают из уравнения:

        

(5)

со степенями свободыf = n – m, где n – общее число определений, n = m.nj.

Пример 2. Вычислить среднюю ошибку определения марганца в пяти пробах стали с различным содержанием его. Значения анализа, % Mn: 1. 0,31; 0,30; 0,29; 0,32. 2. 0,51; 0,57; 0,58; 0,57. 3. 0,71; 0,69; 0,71; 0,71. 4. 0,92; 0,92; 0,95; 0,95. 5. 1,18; 1,17; 1,21; 1,19.Решение. По формуле (1) находят средние значения в каждой пробе, затем для каждой пробы рассчитывают квадраты разностей, по формуле (5) - погрешность. 1)  = (0,31 + 0,30 + 0,29 + 0,32)/4 = 0,305. 2) = (0,51 + 0,57 + 0,58 + 0,57)/4  = 0,578. 3) = (0,71+ 0,69 + 0,71 + 0,71)/4 = 0,705. 4) = (0,92+0,92+0,95+0,95)/4  =0,935. 5)  = (1,18 + 1,17 + 1, 21 + 1,19)/4 = 1,19.

Значения квадратов разностей 1) 0,0052 +0,0052 +0,0152 +0,0152 =0,500.10-3. 2) 0,0122 +0,0082 +0,0022 +0,0082 =0,276.10-3. 3) 0,0052 + 0,0152 + 0,0052 + 0,0052 = 0,300.10-3. 4) 0,0152+ 0,0152 + 0,0152 + 0,0152 = 0,900.10-3. 5) 0,012 +0,022 +0,022 + 02 = 0,900.10-3. Средняя погрешность для f = 4,5 – 5 = 15

 

s = 0,014 % (абс. при f=15 степеням свободы).

Когда проводят по два параллельных определения для каждого образца и находят значения х' и х", для образцов уравнение преобразуется в выражение:

(6)

при f = m степеней свободы.

Пример 3. Найти среднюю погрешность в фотометричес­ком определении хрома в стали по двукратному анализу десяти проб с разным содержанием. Решение. Расчет производят по таблице (с учетом формулы (6)):

Проба

х'

х"

х'-х"

(х'-х")2

1

3,77

3,75

0,02

0,0004

2

2,52

2,55

0,03

0,0009

3

2,46

2,48

0,02

0,0004

4

3,25

3,20

0,05

0,0025

5

1,82

1,85

0,03

0,0009

6

2,05

2,10

0,05

0,0025

7

0,88

0,90

0,02

0,0004

8

1,04

1,02

0,02

0,0004

9

1,10

1,13

0,03

0,0009

10

1,52

1,48

0,04

0,0004

 

 

Средняя погрешность по формуле (6) равна

0,023 % Cr

(при f=10 степеням свободы).

 

см. также

Математическая обработка результатов химического анализа

  1. О математической обработке результатов химического анализа
  2. Оценка погрешностей измерений. Расчет выборочного стандартного отклонения
  3. Запись результатов измерений
  4. Сравнение средних результатов химического анализа.t-критерий Стьюдента
  5. Проблема подозрительно выделяющихся значений
  6. Погрешности косвенных измерений. Погрешность функций одного или нескольких переменных

 

 

www.himikatus.ru

1. Как определить приборную погрешность X?

Величина приборной погрешности может быть найдена одним из следующих способов:

  1. Приборная погрешность может быть указана или на самом приборе, или в его паспорте (в описании лабораторной работы).

  1. Приборная погрешность электроизмерительных приборов определяется по классу точности прибора. Класс точности указывается в нижней части шкалы прибора, как правило, в виде числа, обведенного в кружочек.

Например:2.0 или 0.5 . Класс точности прибора равен

приборной погрешности, выраженной в процентах от максимального значения, измеряемого на данной шкале. Обозначим класс точности прибора буквой N. Тогда:

% . (3)

Таким образом, зная класс точности прибора Nможно рассчитать приборную погрешностьxпо формуле:

. (4)

Пример.Пусть необходимо измерить силу тока амперметром класса

точности 0,05 и с диапазоном измерения (0 - 10) А. Абсолютную погрешность определим по формуле (4):

А.

Так как относительная погрешность зависит от значения измеряемой величины, то она оказывается тем меньше, чем ближе значение измеряемой величины к предельному значению шкалы. Так, в рассматриваемом примере, если измеренное значение тока оказалось бы равным 10А, то %, а если 1А, тоI= 0,5 %.

Следовательно, при работе с многопредельными приборами, в целях получения наименьшей погрешности измерения, следует выбирать такой предел измерения, при котором стрелка прибора имела бы максимальное отклонение.

3. В остальных случаях, когда отсутствует паспорт прибора и не указан класс точности, приборную погрешность следует считать равной половине наименьшего деления шкалы прибора (половине цены деления шкалы).

Пример.При измерении длины обычной линейкой, у которой наименьшее деление шкалы равно 1 мм, следует считать приборную погрешность равной 0,5 мм.

2. Как определить случайную погрешность X?

Если после проведения нескольких измерений одной и той же физической величины обнаруживается, что она принимает различные значения после каждого измерения, то это свидетельствует о наличии случайной погрешности .

Допустим, что проделано nизмерений физической величиныx, и полученыnеё различных значений.

Оценку истинного значения измеряемой величины x принято находить как среднее арифметическое значение результатов измерений:

. (5)

Для того, чтобы вычислить абсолютную погрешность xследует найти разности между каждым из результатов отдельных измерений и среднеарифметическим значением:

(6)

Величины являютсяслучайными отклоненияминаблюдаемой величины от среднеарифметического значения и могут оказаться как положительными (еслиxx), так и отрицательными (еслиxx).

За величину погрешности принимается средняя абсолютная ошибка измерения, равная среднему арифметическому значению модулей случайных отклонений:

(7)

или

. (8)

studfiles.net

Абсолютная погрешность измерений. Как рассчитать абсолютную погрешность измерений? Определение абсолютной и относительной погрешности прямых измерений

Образование 14 сентября 2017

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы – килограммы, объёма – кубические литры, времени – секунды, скорости – метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 106.

В простой линейке длина имеет единицу измерения – сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром – чтобы измерять температуру, гигрометром – чтобы определять влажность, амперметром – замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.абсолютная погрешность измерений

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

Если слаживать или вычитать величины с учетом погрешности, это число будет составлять сумму цифр, которые и обозначают погрешность, и имеются у каждой отдельно взятой величины.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Видео по теме

Знакомство с понятием

Если рассматривать классификацию погрешностей в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой метод измерения физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.абсолютная и относительная погрешность измерений

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.вычисление абсолютной погрешности измерений

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1oС + 0,1o С / 2 = 0,15o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. Точность измерения не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2o С, то можно измерять температуру с точностью до 1o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности – 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.как рассчитать абсолютную погрешность измерений

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности –(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.абсолютная и относительная погрешность измерений формулы

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.пределы допускаемой абсолютной погрешности измерений

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

определение абсолютной и относительной погрешности измерений

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Абсолютная и относительная погрешностьОбразование Абсолютная и относительная погрешность

При любых измерениях, округлении результатов расчетов, выполнении достаточно сложных подсчетов неизбежно возникает то или иное отклонение. Для оценки такой неточности принято использовать два показателя – это аб...

Абсолютная и относительная ссылка в Excel. Как использовать?Компьютеры Абсолютная и относительная ссылка в Excel. Как использовать?

Даже если вы недавно начали работать с программой Microsoft Excel, то, наверное, знаете, что одним из её преимуществ является удобная работа с формулами и таблицами. Поэтому сегодня мы с вами рассмотрим адресование в ...

Показания и противопоказания к переливанию крови. Абсолютные и относительные противопоказания. Какую группу крови можно переливать всемЗдоровье Показания и противопоказания к переливанию крови. Абсолютные и относительные противопоказания. Какую группу крови можно переливать всем

На фоне успехов в клинической медицине внедрено множество методик эффективного лечения различных человеческих патологий. На сегодняшний день достигнуты отличные результаты в трансфузиологии, то есть процессе переливан...

Как рассчитать высоту крыши? Порядок расчета, инструкция и рекомендацииДомашний уют Как рассчитать высоту крыши? Порядок расчета, инструкция и рекомендации

Любой тип здания по окончанию строительства отчетливо подчеркивает кровля. Но следует знать, как рассчитать высоту крыши правильно, ведь от этого зависит множество факторов. От того, насколько верно проведены расчеты ...

Как рассчитать свой идеальный вес по росту и другим показателямЗдоровье Как рассчитать свой идеальный вес по росту и другим показателям

Внимательно за массой своего тела следят чаще женщины, мечтающие о стройной фигуре, или профессиональные спортсмены. Но, тем не менее, узнать, как рассчитать свой идеальный вес, полезно будет каждому. Масса тела выше ...

Абсолютный и относительный лимфоцитозЗдоровье Абсолютный и относительный лимфоцитоз

Превышение нормативного показателя лимфоцитов в крови получило название  лимфоцитоз. Правильная оценка изменения состава крови основывается как на соотношении различных видов лейкоцитов, так и на абсолютном налич...

Бедность - это что? Уровень бедности. Абсолютная и относительная бедностьНовости и общество Бедность - это что? Уровень бедности. Абсолютная и относительная бедность

Почему я бедный? Этот вопрос задают себе каждый день сотни тысяч людей на планете. Они стараются покупать минимум вещей, в которых нуждаются, но даже и на них часто не хватает мизерной зарплаты или пенсии. Бедность &n...

Абсолютная и относительная величинаОбразование Абсолютная и относительная величина

В экономической науке статистические дисциплины находятся на приоритетных позициях. Это обусловлено различными причинами. В первую очередь в рамках общеэкономических специальностей статистические исследования выступаю...

Как рассчитать налог на имущество для физических и юридических лиц.Финансы Как рассчитать налог на имущество для физических и юридических лиц.

Налогообложение имущества существует тысячелетиями. Его применяли уже в Римской империи, и в течение многих веков именно оно было основной формой пополнения государственной казны. В древнем мире поборы подобного рода ...

Абсолютный и относительный показателиОбразование Абсолютный и относительный показатели

Результатом анализа процессов и явлений, исследуемых с использованием статистических методов, является совокупность численных характеристик, которые можно классифицировать на абсолютные и относительные показатели....

monateka.com

Оценка погрешностей измерений при выполнении лабораторных работ по физике

ОЦЕНКА ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ ПРИ ВЫПОЛНЕНИИ

ЛАБОРАТОРНЫХ РАБОТ ПО ФИЗИКЕ

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой полученных результатов. Поскольку не существует абсолютно точных приборов и других средств измерения, следовательно, не бывает и абсолютно точных результатов измерения. Погрешности возникают при любых измерениях, и только правильная оценка погрешностей проведенных измерений и расчетов позволяет выяснить степень достоверности полученных результатов.

Абсолютная погрешность измерения

Рисунок 1

Предположим, что диаметр стержня, измеренный штангенциркулем, оказался равным 14 мм. Можно ли быть уверенным, что он пройдет в “идеальное” отверстие того же диаметра? Если бы этот вопрос был поставлен чисто ”теоретически“, то ответ был бы утвердительным, но на практике может получиться иначе. Диаметр стержня был определен с помощью реального измерительного прибора, следовательно, с некоторой погрешностью. Значит 14 мм - это приближенное значение диаметра – Xпр. Определить его истинное значение невозможно, можно только указать некоторые границы достоверности полученного приближенного результата, внутри которых находится истинное значение диаметра нашего стержня. Эта граница называется границей абсолютной погрешности и обозначается ΔX (её часто называют просто абсолютной погрешностью). Поэтому наш стержень может пройти в отверстие, а так же может и не пройти в него: все зависит от того, в каком месте интервала [Xпр - ΔX, Xпр + ΔX] находится истинное значение диаметра нашего стержня. На рисунке 1 показан случай, когда стержень в отверстие не пройдет.

Итак, абсолютная погрешность показывает, насколько неизвестное экспериментатору истинное значение измеряемой величины может отличаться от измеренного значения.

Результат измерения с учетом абсолютной погрешности записывают так:

Относительная погрешность измерения

Значение абсолютной погрешности все же не позволяет в полной мере оценить качество наших измерений. Если, например, в результате измерений установлено, что длина стола с учетом абсолютной погрешности равна (100± 1) см, а толщина его крышки равна (2 ± 1) см, то качество измерений в первом случае выше (хотя граница абсолютной погрешности измерений в обоих случаях одинакова). Качество измерений характеризуется относительной погрешностью ε, равной отношению абсолютной погрешности ΔX к значению величины Xпр, получаемой в результате измерения:

.

При выполнении лабораторных работ выделяют следующие виды погрешностей: погрешности прямых измерений; погрешности косвенных измерений; случайные погрешности и систематические погрешности.

Погрешности прямых измерений

Прямое измерение - это такое измерение, при котором его результат определяется непосредственно в процессе считывания со шкалы прибора. В нашем первом примере с определением диаметра стержня речь шла как раз о таком измерении. Погрешность прямого измерения обозначается значком Δ. Если вы умеете правильно пользоваться измерительным прибором, то погрешность прямого измерения зависит только от его качества и равна сумме инструментальной погрешности прибора (Δ и) и погрешности отсчета (Δ 9). Таким образом: Δ = Δ и + Δ о

Инструментальная погрешность измерительного прибора (Δи) определяется на заводе-изготовителе. Абсолютные инструментальные погрешности измерительных приборов, чаще всего используемых для проведения лабораторных работ, приведены в таблице 1.

Таблица 1

Средства измерения

Предел измерения

Цена деления

Инструментальная

погрешность

Линейка ученическая

До 30 см

1 мм

1 мм

Линейка чертежная

До 50 см

1 мм

0,2 мм

Линейка инструментальная (стальная)

До 30 см

1 мм

0,1 мм

Линейка демонстрационная

100 см

1 см

0,5 см

Лента измерительная

150 см

0,5 см

0,25 см

Измерительный цилиндр

до 250 мл

1 мл

1 мл

Штангенциркуль

150 мм

0,1 мм

0,05 мм

Микрометр

25 мм

0,01 мм

0,005 мм

Динамометр учебный

4 Н

0,1 Н

0,05 Н

Секундомер электронный

100 с

0,01 с

0,01 с

Барометр-анероид

720-780 мм.рт.ст

1 мм.рт.ст.

3 мм.рт.ст.

Термометр спиртовой

0-100оС

1оС

1оС

Термометр ртутный

До 250оС

1оС

0,5оС

Амперметр школьный

2 А

0,1 А

0,05 А

Вольтметр школьный

6 В

0,2 В

0,15 В

Погрешность отсчета измерительного прибора (Δ о) связана с тем, что указатель прибора не всегда точно совпадает с делениями шкалы. В этом случае погрешность отсчета не превосходит половины цены деления шкалы.

Поэтому абсолютную погрешность прямого измерения находят по формуле ., где с - цена деления шкалы измерительного прибора.

Учитывать погрешность отсчета надо только в тех случаях, когда указатель прибора при измерении находится между нанесенными на шкалу прибора делениями. Не имеет смысла учитывать, погрешности отсчета у цифровых измерительных приборов.

Одновременно учитывать обе составляющие погрешности прямого измерения следует лишь в том случае, если их значения близки друг к другу. Любым из этих слагаемых можно пренебречь, если оно не превосходит одной трети или одной четверти второго. В этом состоит так называемое правило "ничтожных погрешностей".

ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ

Если результат эксперимента определяется на основе расчетов, то измерения называются косвенными. Например, при определении импульса тела p = mv, скорости равноускоренного движении V = V0 + at и т.п. Однако нам не удастся подсчитать погрешность полученного результата косвенных измерений так же просто, как при проведении прямых измерениях.

Предположим, что нам необходимо определить периметр и площадь прямоугольника. Произведя измерения линейкой, мы получим длины его сторон. Пусть длина одной стороны прямоугольника будет равна a, другой - b. Тогда периметр р прямоугольника будет равен p=2(a + b), а его площадь s = ab. Можно ли утверждать, что погрешности результатов расчета периметра прямоугольника и его площади будут одинаковыми? Вряд ли, ведь формулы, которыми пользовались при расчете разные: при нахождении периметра величины, полученные при измерении, мы складывали, а при подсчете его площади - перемножали.

При расчете погрешности результатов косвенных измерений нам придется учитывать, как выглядит формула, по которой производился расчет искомой величины. В теории погрешностей доказывается, как это можно сделать в общем виде. Мы же воспользуемся набором готовых формул для вычисления относительной погрешности результатов косвенных измерений. Формулы расчета относительных погрешностей для различных случаев приведены в таблице 3.

Таблица 2

Как пользоваться этой таблицей?

Вид функции

Относительная погрешность

Пусть, например, некоторая физическая величина х рассчитывается по формуле:

.

Значения k, m и p найдены прямыми измерениями во время проведения эксперимента. Их абсолютные погрешности соответственно равны . Подставляя полученные значения в формулу, получим приближенное значение .

Затем следует рассчитать относительную погрешность результата косвенных измерений - , воспользовавшись соответствующей формулой из таблицы 3.

На первый взгляд может показаться, что такой формулы в таблице нет. При более внимательном анализе ситуации заметим, что в нашем случае искомое значение находится как отношение двух величин k + m = А и р = В, поэтому нам можно воспользоваться формулой Х = А : В.

В нашем случае из таблицы 3 имеем для отношения А : В: или

Из этой же таблицы мы можем узнать, как рассчитать относительную погрешность суммы: . Следовательно, .

Теперь можно найти значение границе абсолютной погрешности результатов косвенных измерений, которая рассчитывается несколько иначе, чем при проведении прямых измерений. Для вычисления абсолютной погрешности результатов косвенных обычно измерений используют формулу для расчета относительной погрешности

.

Откуда ..

Окончательный результат косвенных измерений записывают в виде: .

Использование таблиц, построение графиков, сравнение

результатов экспериментов с учетом погрешностей.

ЗАПИСЬ ОКОНЧАТЕЛЬНЫХ РЕЗУЛЬТАТОВ

При использовании таблиц следует помнить о том, что погрешности приведенных в них значений имеют границу, равную ±0,5 в следующем разряде за последней значащей цифрой. Например, если в таблице указано, что плотность равна 2,7 103 кг/м3, то на самом деле ее значение - (2,7 ± 0,5) 103 кг/м3.

Рисунок 2

При построении графиков следует иметь в виду, что по результатам опытов мы получаем не точку, а прямоугольник со сторонами 2Δх и 2Δy (рис. 3). Поэтому при построении графиков необходимо проводить плавную линию так, чтобы по разные стороны от кривой оказалось примерно одинаковое число точек.

Рисунок 3

Погрешность измерения следует также учитывать, если вы хотите убедиться в достоверности измерения физической величины, действительное значение которой известно. В этом случае надо убедиться в принадлежности известного значения физической величины интервалу (см. рис.4.).

Рисунок 4

Если вы проверяете закон А = В, то результат проверки будет достоверен лишь при наличии общих точек у интервалов , то есть при частичном или полном перекрывании этих интервалов

(рис.5),.

После того, как будет вычислена граница абсолютной погрешности, ее значение обычно округляется до одной значащей цифры. Затем результат измерения записывается с числом десятичных знаков, не большим, чем их имеется в абсолютной погрешности. Например, запись V = 0,56032 ± 0,028 м/с плоха. Из такой записи следует, что мы как то сумели рассчитать численное значение скорости в тысячу раз точнее, чем позволяли нам приборы. (Действительно, ответ дан с точностью до 5-го знака после запятой, а погрешность имеется уже во втором знаке после запятой, что полностью дискредитирует как сам результат, так и человека его записавшего).

В приведенном примере следует округлить значение абсолютной погрешности до одной значащей цифры: ΔV = 0,03 м/с , а в приближенном значении скорости оставить два знака после запятой (столько же, сколько и в абсолютной погрешности): V = 0,56 м/с. Правильная запись ответа должна выглядеть так: V = 0,56 ± 0,03 м/с.

Погрешность взвешивания

Погрешности при взвешивании возникают не только из-за погрешностей гирь, но еще и потому, что точность показания весов зависит от нагрузки на них.

График зависимости погрешности весов (ВТ2-200) от нагрузки приведен на рисунке 2,.

А погрешности гирь из набора Г4-210 для лабораторных работ приведены в таблице 2.

Номинальное значение

массы гири.

Границы

погрешности

10мг; 20мг; 50мг; 100мг

1 мг

200 мг

2 мг

500 мг

3 мг

1 г

4 мг

2 г

6 мг

5 г

8 мг

10 г

12 мг

20 г

20 мг

50 г

30 мг

100 г

40 мг

Таблица 3

Рисунок 5

Таким образом, при использовании весов приходиться учитывать:

1) погрешность весов ;

2) погрешность гирь и разновесов ;

3) погрешность подбора гирь .

Погрешность подбора гирь аналогична погрешности отсчета и равна половине массы наименьшей гири, лежащей на весах (либо выводящей ее из равновесия). Поэтому при прямом измерении массы на весах: =++.

Пусть, например, взвешиваемое тело уравновешено на весах при помощи гирь, номинальные значения которых (указанные на гирях) равны 50 г, 20 г, 100 мг и выводятся из равновесия разновесом в 10 мг. Определим абсолютную погрешность взвешивания. По графику зависимости погрешности весов от нагрузки найдем погрешность весов . Она равна примерно 25 мг (для груза массой ~70 г). Погрешность гирь найдем по таблице 2.

=30+20+1=51 мг. Погрешность подбора будет равна =10 мг/2=5 мг.

Поэтому граница погрешности при взвешивании будет равна: =25+51+5=81 мг. Следовательно, m = 70,100,081 г.

Инструментальные погрешности электроизмерительных приборов

Если при выполнении работы приходится пользоваться электроизмерительными приборами, не указанными в таблице 1, то инструментальную погрешность прибора все равно можно определить. Каждый электроизмерительный прибор в зависимости от качества изготовления имеет определенный класс точности. Значение класса точности наносится на его шкалу (изображается на шкале отдельно стоящим числом или числом в кружке), который позволяет определить погрешность этого прибора.

Если класс точности миллиамперметра 4, а предел измерения этого прибора равен 250 мА; то абсолютная инструментальная погрешность прибора составляет 4% от 250 мА, т.е. =10 мА.

СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ.

Необходимо иметь ввиду, что во всех наших оценках границ погрешностей мы не учитывали, что существуют так называемые систематические погрешности. Эти погрешности возникают по разным причинам: из-за влияния измерительного прибора на процессы в измерительной установке; недостаточной корректности методики измерения; неправильных показаний прибора (например из-за первоначального смещения стрелки прибора от нулевого деления шкалы) и по другим причинам.

В школьном эксперименте устранить систематические погрешности довольно трудно из-за того, что ограничен выбор средств измерения, и они имеют не очень высокое качество. Поэтому при подготовке и проведении практических работ УЧИТЕЛЮ приходится продумывать методику проведения эксперимента и тщательно подбирать соответствующие приборы для сведения систематических погрешностей к минимуму. Поэтому будем считать систематические ошибки не существенными и учитывать их при расчете погрешности (во всяком случае пока) не будем.

СЛУЧАЙНЫЕ ПОГРЕШНОСТИ

Часто при проведении повторных измерений какой-либо величины получаются несколько различные результаты, отличающиеся друг от друга на величину большую, чем сумма погрешностей прибора и отсчета. Это вызвано действием случайных факторов, которые невозможно устранить в процессе эксперимента.

Допустим, что мы определяем дальность полета шарика, пущенного из баллистического пистолета в горизонтальном направлении. Даже при неизменных условиях поведения эксперимента шарик не будет попадать в одну и ту же точку поверхности стола. Это связано с тем, что шарик имеет не совсем правильную форму, так как на боек ударного механизма при движении в канале пистолета действует сила трения, изменяющаяся по величине, положение пистолета в пространстве не совсем жестко зафиксировано и т.д.

Такой «разброс» результатов наблюдается практически всегда при выполнении серии экспериментов. В этом случае за приближенное значение измеряемой величины берут среднее арифметическое.

Причем, чем больше будет проведено экспериментов, тем ближе будет среднее арифметическое к истинному значению измеряемой величины.

Но и среднее арифметическое, вообще говоря, не совпадает с истинным значением измеряемой величины. Как же найти границу интервала, в котором находится истинное значение? Эта граница называется границей случайной погрешности - .

В теории расчета погрешностей показывается, что , где - значения физической величины в 1, 2,...n опыте

Погрешность среднего арифметического значения определяемой величины.

Когда мы находим среднее арифметическое значение некоторой величины по результатам серии опытов, то естественно считать, что оно имеет меньшее отклонение от истинного значения, чем каждый отдельный опыт серии. Другими словами, погрешность среднего меньше, чем погрешность каждого опыта серии. В теории погрешностей доказывается, что граница погрешности среднего значения равна:

.

Окончательно имеем:

.

Из этой формулы следует, что граница случайной погрешности среднего значения стремится к нулю при увеличении числа опытов в серии. Это не значит, однако, что можно проводить абсолютно точные измерения - ведь приборы, с помощью которых мы получили результаты, также имеют погрешности. Поэтому погрешность среднего при бесконечном увеличении числа опытов стремится к погрешности прибора.

Очевидно, что число опытов имеет смысл выбрать таким, чтобы случайная погрешность среднего сравнялась с погрешностью прибора, либо стала меньше ее. Дальнейшее увеличение числа измерений теряет смысл, так как не увеличивает точность получаемого результата: , где - граница погрешности измерительного прибора.

Если нет возможности по каким-либо причинам провести достаточное количество опытов (т.е. не удается сделать погрешность среднего равной погрешности приборов), то результат должен быть взят в виде: , где - граница случайной погрешности среднего.

gigabaza.ru